Temporal constraints in viterbi alignment for speech recognition in noise

نویسندگان

  • Néstor Becerra Yoma
  • Lee Luan Ling
  • Sandra Dotto Stump
چکیده

This paper addresses the problem of temporal constraints in the Viterbi algorithm using conditional transition probabilities. The results here presented suggest that in a speaker dependent small vocabulary task the statistical modelling of state durations is not relevant if the max and min state duration restrictions are imposed, and that truncated probability densities give better results than a metric previously proposed [1]. Finally, context dependent and context independent temporal restrictions are compared in a connected word speech recognition task and it is shown that the former leads to better results with the same computational load.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker dependent temporal constraints combined with speaker independent HMM for speech recognition in noise

This paper addresses the problem of speech recognition in noise using speaker-dependent temporal constraints in the Viterbi algorithm in combination with speaker-independent HMM. It is shown that the speaker-dependent re-estimation of state duration parameters requires a low computational load and a small training database, and can lead to reductions in the error rate as high as 30% or 40% with...

متن کامل

Robust connected word speech recognition using weighted viterbi algorithm and context-dependent temporal constraints

This paper addresses the problem of connected word speech recognition with signals corrupted by additive and convolutional noise. Context-dependent temporal constraints are proposed and compared with the ordinary temporal restrictions, and used in combination with the weighted Viterbi algorithm which had been tested with isolated word recognition experiments in previous papers. Connected-word r...

متن کامل

Weighted Viterbi algorithm and state duration modelling for speech recognition in noise

A weighted Viterbi algorithm (HMM) is proposed and applied in combination with spectral subtraction and Cepstral Mean Normalization to cancel both additive and convolutional noises in speech recognition. The weighted Viterbi approach is compared and used in combination with state duration modelling. The results presented in this paper show that a proper weight on the information provided by sta...

متن کامل

Effects of ageing on speed and temporal resolution of speech stimuli in older adults

 Background: According to previous studies, most of the speech recognition disorders in older adults are the results of deficits in audibility and auditory temporal resolution. In this paper, the effect of ageing on timecompressed speech and auditory temporal resolution by word recognition in continuous and interrupted noise was studied. Methods: A time-compressed speech test (TCST) w...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Speech and Audio Processing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 1999